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Abstract. The low-lying energy levels of three-electron quantum dots in a magnetic field are
calculated by both the Hartree–Fock (HF) and the numerical diagonalization methods. Many-
body effects on the energy level structure are investigated by comparing the results from these
two approaches. It is found that many-body interactions can apparently change the relative
positions of the low-lying energy levels, especially at larger angular momentum quantum
numbers, and the relative changes of the levels almost have nothing to do with the external
magnetic field, but linearly depend on the dot size.

1. Introduction

With the recent progress in semiconductor technology the experimental study of quantum
dots in which only a few electrons are bound at semiconductor interfaces is expanding
rapidly [1–6]. Due to the low effective density and the restriction of electron motion
to only two dimensions, the electrons in such systems are usually highly correlated. A
full understanding of the experimental results needs an analysis of many-body effects.
Theoretical calculations using the Hartree approximation for electron numbersN < 10
neglected the exchange and correlation effects [7–9]. The important role of the exchange
and correlation effects has been investigated for the ground state of a two-electron quantum
dot by comparison of a Hartree, a Hartree–Fock (HF) and an exact treatment [10]. It was
found that the HF approximation, including the exchange interaction but neglecting the
electron correlation, can even give qualitatively incorrect results about the spin singlet–
triplet transition [6, 11, 12]. Though the many-body effects can be completely included
in the exact numerical diagonalization treatment, which has been performed for systems
with electron numbersN 6 4 [13, 14], it is computationally extensive and exceedingly
difficult for more than six electrons. So it is not a good choice to resort to the exact
numerical diagonalization method to treat quantum dots with more electrons. Indeed, if the
correlation effects are treated properly the HF approximation still can be a useful method
for these systems. The problem is how we can obtain the information about the role of the
correlation effects in determining the energy spectra of quantum dots. The most direct way
to do so is to compare the results from the HF approximation and the exact treatment as
done for two electrons [10]. Though this way is not suitable for systems with more than
six electrons, it still can give us some valuable information about the electron correlations
and is expected to give a guide to treat the problems for more electrons. To our knowledge,
there has been no such a study on quantum dots with more than two electrons. As a first
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step to future study on many-electron quantum dots, we shall treat only the three-electron
case in the present work.

The main purpose of this paper is to present a detailed study of the many-body effects in
three-electron quantum dots in a magnetic field. To fully understand the influence of many-
body interactions on the properties of the dots, we shall not only investigate the effects on
their ground states but also on their low-lying exciting states which are also important to
determine the properties of the systems.

In section 2, the methods used to calculate the low-lying energy levels of the systems
are briefly described. The HF and the numerical diagonalization results are compared and
discussed in section 3. Finally, a summary is given in section 4.

2. Methods to calculate the energy levels

Throughout this paper we assume we are dealing with the case of ideally two-dimensional
electrons, in a circular dot, confined by a parabolic potential with a magnetic fieldB

perpendicular to the plane of the dot, andB is supposed to be strong enough to keep the
electrons spin polarized. In this case the constant Zeeman term can be ignored, so the total
Hamiltonian is [13]

H =
3∑
i=1

h(i)+ e2

4πεε0

∑
i<j

1

rij
(1)

where

h(i) = 1

2m∗
(pi + eAi )

2+ 1

2
m∗ω2

0r
2
i (2)

is the single-electron Hamiltonian. Herem∗ is the electron effective mass, andAi =
(B/2)(−yi, xi, 0), the vector potential in the symmetric gauge. In the way mentioned in the
introduction, to investigate many-body effects in the dots we shall calculate their low-lying
energy levels by both the HF approximation and direct numerical diagonalization. So, in
the following these two methods are briefly described first.

2.1. Numerical diagonalization

To numerically diagonalize the Hamiltonian matrix corresponding toH , a suitable set of
basis functions must be chosen first. Here the basis functions8α are chosen to be the
eigenfunctions of the free-electron HamiltonianH 0 = ∑3

i=1 h(i), which are the Slater
determinants composed by the eigenfunctions of the single-electron Hamiltonianh(i) with
the form [15]

φnm(r) = Nnmr |m| e−imϕL|m|n

(
r2

2a2

)
e−(r

2/4a2) (3)

whereNnm is the normalization constant,a2 = (h̄/m∗)(ω2
c + 4ω2

0)
−1/2, ωc = eB/m∗ and

L
|m|
n (x) is a Laguerre polynomial. The spin function is omitted from equation (3) since only

the spin-polarized state is considered.
In this basis set the eigenfunctions ofH are expanded as

9 =
∑
α

Cα8α (4)

where the multiple indexα = (n1m1, n2m2, n3m3), ni andmi denote the radial and the
angular quantum numbers of electroni. For the state with total angular momentum−Mh̄,
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which is conserved due to the rotational symmetry of the interaction, the sum is over all
indicesα limited by the conditionsm1+m2+m3 = M and(n1, m1) 6= (n2, m2) 6= (n3, m3).

In practical calculations, only a finite set of indicesα can be used in equation (4). For
the systems we treat here, because of the large separations between different Landau levels
the contribution of the Landau-level mixing to the many-body effects is relatively small,
especially in a large magnetic field. It does not give a significant influence on the energy
spectra of the dots [13] and can be ignored in the process of numerical diagonalization.
Though this procedure may cause certain errors, the accuracy of the results can be estimated
and improved as necessary. In this sense we still think that the method is exact.

2.2. Hartree–Fock approximation

In the HF approximation the many-electron problem is reduced to a single-electron problem.
Following the usual procedure, we also expand the single-electron wavefunctions in a set
of basis functions. Instead of choosing the eigenfunctions ofh(i) to be the basis set as
Pfannkucheet al did [10], here we use the simple Gaussian functions as the basis set,
which are more convenient for mathematical treatment. This choice is indeed similar to
the cases in atomic structure calculations where the Slater functions, not the hydrogen-like
wavefunctions, are usually used. Thus, in terms of Gaussian functions the HF single-electron
wavefunctions are expanded as

8HF
nm (r) =

∑
p

Cnmpχmp(r) (5)

where

χmp(r) = 2(|m|+2)/2α
(|m|+1)/2
p

(|m|!)1/2 r |m| e−αpr
2 1√

2π
e−imϕ. (6)

By choosing some finite basis set size to minimize the Hamiltonian integral and varying
the expansion coefficientsCnmp for a fixed set of exponentsαp, we obtain the HF secular
equations [16]:

FC = εSC (7)

where the overlap matrixS and the Fock matrixF are defined by

Smpq = 〈χmp|χmq〉 (8)

Fmpq = hmpq +Gmpq (9)

hmpq = 〈χmp|h|χmp〉 (10)

Gmpq =
occ∑
n′,m′

∑
r,s

C∗n′m′rCn′m′s [(mpmq|m′r m′s)− (mpm′s|m′r mq)] (11)

with

(mpmq|m′r m′s) = e2

4πεε0

〈
χmp(1)χm′r (2)

∣∣∣∣ 1

r12

∣∣∣∣χmq(1)χm′s(2)〉 . (12)

The orbital energiesεnm are related to the total energyEHF by

EHF = 1

2

[ occ∑
n,m

εm +
occ∑
n,m

∑
p,q

C∗nmpCnmqhmpq

]
. (13)

The summation
∑occ

n,m in equations (11) and (13) is over all occupied orbitals. If the three
occupied single-electron orbitals are(n1, m1), (n2, m2) and(n3, m3), then the corresponding
total energy state is labelled as{n1m1, n2m2, n3m3}.
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3. Results and discussion

In the numerical diagonalization, since the mixing of the Landau levels is neglected the
low-lying energy states with a given value ofM are determined by using a finite set of
basis functions8α corresponding to the lowest Landau level whereα = (0m1, 0m2, 0m3)

or (m1, m2, m3) with the limitationsm1 6= m2 6= m3 andm1+m2+m3 = M. For example,
if M = 6, thenα = (1, 2, 3), (0, 2, 4) and(0, 1, 5). In the HF calculation, for a given value
of M the three occupied single-electron orbitals are(0, m1), (0, m2) and (0, m3) with the
same limitations as forα and the energy levels are labelled as{m1, m2, m3}. The low-lying
energy levels at the magic numbersM = 6, 9 and 12 of a three-electron quantum dot with
parametersωc/ω0 = 3 and l0/a∗ = 3 (l0 = (h̄/m∗ω0)

1/2 is the oscillator length anda∗

the effective Bohr radius) are calculated by both the HF and the numerical diagonalization
methods. The results are illustrated in figure 1. For the HF calculation five Gaussian
functions are taken into account in equation (5). This corresponds to an accuracy of the
results of about 0.1%. The errors caused by neglecting the mixing of the Landau levels in
the numerical diagonalization are believed not to influence the physics especially for the
cases of few electrons in a large magnetic field [13].

Figure 1. The low-lying energy level structures in the HF approximation and the numerical
diagonalization (ND) atM = 6, 9 and 12. The energies are in units of ¯hω0 and the dot
parameters are set asωc/ω0 = 3 andl0/a∗ = 3.

Many-body effects on the low-lying energy levels of the dot are clearly shown in
figure 1. Because of the many-body interactions the relative positions of the energy levels
are rearranged. In the HF approximation, the low-lying energy levels at anyM lie close
together except for the lowest one. When the many-body effects are included, however, the
distribution of the corresponding levels is more scattered. AtM = 6, for example, the HF
levels {0, 1, 5} and {0, 2, 4} lie close together and have a relatively larger spacing with the
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lowest one{1, 2, 3}, but when the many-body interactions are included the two close-lying
levels are pushed away from each other and these three levels are almost equally separated.
At largerM, where there are more close-lying energy states corresponding to the first Landau
level, the role of the many-body interactions is more apparent. As shown in figure 1, at
M = 12 there are three groups of HF energy levels lying very close together. Group (1)
includes levels{0, 5, 7}, {2, 3, 7} and {1, 2, 9}, group (2) includes{2, 4, 6} and {0, 1, 11}
and group (3) includes{0, 2, 10}, {1, 4, 7}, {0, 3, 9} and {1, 3, 8}. After the many-body
interactions are considered, this phenomenon disappears.

Figure 2. The low-lying energy levels atM = 9 as a function of the relative magnetic field.
The energy unit is the same as in figure 1 andl0/a

∗ = 3.

To fully understand the role of many-body interactions, the low-lying energy levels as
functions of the relative magnetic strengthωc/ω0 and the relative dot sizel0/a∗ are also
studied, and the results atM = 9 are shown in figures 2 and 3, respectively. From figure 2
we can see that the two sets of energy levels keep parallel as the magnetic field is changed.
This illustrates that the influence of the many-body interactions on the relative positions of
the energy levels almost does not change with the relative magnetic strengthωc/ω0. So, in
the present problem the role of the external magnetic field, besides keeping the electrons
spin polarized (typically, a field of several tesla is large enough to do so), is just to move
the energy levels of a givenM upward or downward as a whole. As shown in figure 3, the
energy levels vary linearly with the relative dot sizel0/a∗, but the slopes of the levels are
different. The HF levels have smaller slopes than those from the numerical diagonalization.
This means that for the larger size the role of the many-body interactions is more important.
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Figure 3. The low-lying energy levels atM = 9 as a function of the relative dot size. The
energy unit is the same as in figure 1 andωc/ω0 = 3.

4. Summary

We have compared the low-lying energy levels atM = 6, 9 and 12 of three-electron quantum
dots calculated in the HF approximation with those from the numerical diagonalization.
Many-body effects on the energy level structure are analysed. It is shown that because of
the absence of the many-body interactions some of the HF levels lie very close together,
especially at largerM, but when the many-body interactions are included the close-lying
energy levels are pushed away from each other and the level structure is apparently changed.
It is also shown that the changes of the relative positions of the energy levels caused by
many-body interactions almost have nothing to do with the external magnetic field, but
linearly depend on the dot size. Though present study is only for three-electron quantum
dots, the results could be expected useful for other few-electron quantum dots.
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